Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Journal
Document Type
Year range
1.
Cell ; 183(6): 1479-1495.e20, 2020 12 10.
Article in English | MEDLINE | ID: covidwho-917236

ABSTRACT

We present an integrated analysis of the clinical measurements, immune cells, and plasma multi-omics of 139 COVID-19 patients representing all levels of disease severity, from serial blood draws collected during the first week of infection following diagnosis. We identify a major shift between mild and moderate disease, at which point elevated inflammatory signaling is accompanied by the loss of specific classes of metabolites and metabolic processes. Within this stressed plasma environment at moderate disease, multiple unusual immune cell phenotypes emerge and amplify with increasing disease severity. We condensed over 120,000 immune features into a single axis to capture how different immune cell classes coordinate in response to SARS-CoV-2. This immune-response axis independently aligns with the major plasma composition changes, with clinical metrics of blood clotting, and with the sharp transition between mild and moderate disease. This study suggests that moderate disease may provide the most effective setting for therapeutic intervention.


Subject(s)
COVID-19 , Genomics , RNA-Seq , SARS-CoV-2 , Single-Cell Analysis , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Severity of Illness Index
2.
J Cell Biol ; 219(10)2020 10 05.
Article in English | MEDLINE | ID: covidwho-713813

ABSTRACT

With the rapid global spread of SARS-CoV-2, we have become acutely aware of the inadequacies of our ability to respond to viral epidemics. Although disrupting the viral life cycle is critical for limiting viral spread and disease, it has proven challenging to develop targeted and selective therapeutics. Synthetic lethality offers a promising but largely unexploited strategy against infectious viral disease; as viruses infect cells, they abnormally alter the cell state, unwittingly exposing new vulnerabilities in the infected cell. Therefore, we propose that effective therapies can be developed to selectively target the virally reconfigured host cell networks that accompany altered cellular states to cripple the host cell that has been converted into a virus factory, thus disrupting the viral life cycle.


Subject(s)
Antiviral Agents/pharmacology , Host Microbial Interactions/drug effects , Virus Diseases/drug therapy , Virus Replication/drug effects , Drug Discovery , Humans , Immunologic Factors/pharmacology , Metabolic Networks and Pathways/drug effects , Protein Interaction Maps , Proteolysis , RNA Viruses/drug effects , RNA Viruses/physiology , Virus Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL